Connect with us

Hi, what are you looking for?

Latest News

Our galaxy’s black hole spins fast and drags space-time with it, scientists say

The supermassive black hole at the center of our galaxy, Sagittarius A*, is spinning rapidly and altering space-time around it, a new study has found.

Space-time is the four-dimensional continuum that describes how we see space, fusing one-dimensional time and three-dimensional space together to represent the space fabric that curves in response to massive celestial bodies.

A team of physicists observed the black hole, which is located 26,000 light-years from Earth, with NASA’s Chandra X-ray Observatory, a telescope designed to detect the X-ray emissions from hot regions of the universe. They calculated Sagittarius A*’s rotational speed by using what is known as the outflow method, which looks at radio waves and X-ray emissions that can be found in the material and gases surrounding black holes, otherwise known as the accretion disk, according to the study published October 21 in the Monthly Notices of the Royal Astronomical Society.

The researchers confirmed that the black hole is spinning, which causes what is known as the Lense-Thirring effect. Also known as frame dragging, the Lense-Thirring effect is what happens when a black hole drags space-time along with its spin, said lead study author Ruth Daly, a physics professor at Penn State University who designed the outflow method over a decade ago.

Since the invention of the outflow method, Daly has been working to determine the spin of various black holes and authored a 2019 study that explored over 750 supermassive black holes.

“With this spin, Sagittarius A* will be dramatically altering the shape of space-time in its vicinity,” Daly said. “We’re used to thinking and living in a world where all the spatial dimensions are equivalent — the distance to the ceiling and the distance to the wall and the distance to the floor … they all sort of are linear, it’s not like one is totally squished up compared to the others.

“But if you have a rapidly rotating black hole, the space-time around it is not symmetric — the spinning black hole is dragging all of the space-time around with it … it squishes down the space-time, and it sort of looks like a football,” she said.

The altering of space-time is nothing to worry about, but illuminating this phenomenon could be very useful to astronomers, Daly said.

“It’s a wonderful tool to understand the role that black holes play in galaxy formation and evolution,” she said. “The fact that they’re dynamical entities which can be spinning … and then that can impact the galaxy that this is sitting in — it’s very exciting and very interesting.”

The spin of supermassive black holes

The spin of a black hole is given a value from 0 to 1, with 0 meaning the black hole is not spinning, and 1 being the maximum spin value. Previously there was no consensus on a value for the spin of Sagittarius A*, Daly said. 

With the outflow method, which is the only method that uses both information from the outflow and from the material within the vicinity of the black hole, Daly said, Sagittarius A* was found to have a spin angular momentum value between 0.84 and 0.96, whereas M87* — a black hole in the Virgo galaxy cluster that is 55 million light-years from Earth, was found to spin at the value of 1 (with a larger uncertainty of plus or minus 0.2) and is near the maximum for its mass.

While the team had found the two black holes to be spinning at similar rates, M87* is much more massive than Sagittarius A*, Daly said, so Sagittarius A* has less distance to cover and spins more times per one spin of M87*.

Sagittarius A* “is spinning much more rapidly (in comparison), not because it has a higher spin angular momentum, but because it has less distance to travel when it goes around once,” Daly explained.

Black holes and galactic history

Knowing the mass and the spin of a black hole helps astronomers understand how the black hole might have formed and evolved, Daly said.

Black holes that formed as a result of smaller black holes merging would typically see a low spin value, said Dejan Stojkovic, a professor of cosmology at the University at Buffalo who was not involved with the study. However, a black hole that was made with accretion of surrounding gas would see a high spin value.

The rate at which Sagittarius A* is spinning would indicate that a significant portion of the mass of the black hole came from accretion, he said.

“The question of whether our central galactic black hole rotates or not, or how fast it rotates, is quite important,” Stojkovic said in an email.

“Ultimately, we want to measure the properties of the center of our galaxy as good as possible. This way we can learn about the history and structure of our galaxy, put our theories to (the) test, or even infer the existence of some very interesting and intriguing objects like wormholes,” added Stojkovic, who was the lead author of a 2019 study on the hypothetical structures.

This post appeared first on cnn.com

Enter Your Information Below To Receive Free Trading Ideas, Latest News And Articles.






    Your information is secure and your privacy is protected. By opting in you agree to receive emails from us. Remember that you can opt-out any time, we hate spam too!

    You May Also Like

    Latest News

    North Korea may be known as the hermit kingdom, but the isolated nation could be edging toward opening its borders to small numbers of...

    Editor's Pick

    One of the perks of being speaker of the House — or at least, one of the characteristics of it — is that you...

    Latest News

    Evacuations are underway across Hawaii’s Big Island and Maui as passing Hurricane Dora helps fuel wildfires that have damaged structures, prompted rescues and spurred...

    Latest News

    Former world No. 1 Caroline Wozniacki won her first competitive tennis match in three-and-a-half years on Tuesday, defeating Australian Kimberly Birrell 6-2 6-2 at...

    Disclaimer: balanceandcharge.com, its managers, its employees, and assigns (collectively “The Company”) do not make any guarantee or warranty about what is advertised above. Information provided by this website is for research purposes only and should not be considered as personalized financial advice. The Company is not affiliated with, nor does it receive compensation from, any specific security. The Company is not registered or licensed by any governing body in any jurisdiction to give investing advice or provide investment recommendation. Any investments recommended here should be taken into consideration only after consulting with your investment advisor and after reviewing the prospectus or financial statements of the company.


    Copyright © 2024 balanceandcharge.com